a2 United States Patent

Apte

US009363187B2

US 9,363,187 B2
Jun. 7,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

JITTER BUFFERING SYSTEM AND METHOD
OF JITTER BUFFERING

Applicant: Nvidia Corporation, Santa Clara, CA
(US)

Inventor: Atul Apte, Santa Clara, CA (US)

Assignee: Nvidia Corporation, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 715 days.

Appl. No.: 13/846,205

Filed: Mar. 18,2013
Prior Publication Data
US 2014/0281017 Al Sep. 18, 2014

Related U.S. Application Data

Provisional application No. 61/730,940, filed on Nov.
28, 2012.

Int. Cl1.

HO4L 12/28 (2006.01)

HO4L 12/841 (2013.01)

HO4L 12/851 (2013.01)

HO4L 29/06 (2006.01)

U.S. CL

CPC HO4L 47/28 (2013.01); HO4L 47/2408

(2013.01); HO4L 65/80 (2013.01)

610

(58) Field of Classification Search
CPC ... HO4L 29/08072; HO4L 29/06; HO4L 43/00;
HO4L 12/2602; HO4L 41/22
USPC ittt 709/224, 203
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2008/0084900 Al* 4/2008 Dunn ... HO4L 43/087
370/516
2008/0140767 Al* 6/2008 Rao ..o HO4L 67/00
709/203
2008/0155087 Al* 6/2008 Blouin HO4L 43/0817
709/223
2008/0165766 Al* 7/2008 Synnergren HO4L 12/66
370/352
2010/0013839 Al* 1/2010 Rawson GO6F 3/14
345/502

* cited by examiner
Primary Examiner — Duc C Ho

(57) ABSTRACT

A jitter buffering system and a method of jitter buffering. The
jitter buffering system may be embodied in a quality of ser-
vice (QoS) management server, including: (1) a network
interface controller (NIC) configured to receive one-way-
delay statistics regarding a video stream transmitted to a
client, and (2) a processer configured to employ the one-way-
delay statistics to calculate and recognize jitter and subse-
quently generate a command for the client to enable jitter
buffering.

20 Claims, 3 Drawing Sheets

RECEIVE, ON A SERVER,
ONE-WAY-DELAY STATISTICS BASED
ON A VIDEO STREAM TRANSMITTED

FROM THE SERVER TO A CLIENT

620~

!

EMPLOY THE ONE-WAY-DELAY
STATISTICS IN CALCULATING AND
RECOGNIZING A LEVEL OF JITTER

EXCEEDING A THRESHOLD FOR

AT LEAST A JITTER WAIT TIME

630~

!

ENABLE JITTER

640" BUFFERING ON THE CLIENT

650 END

U.S. Patent Jun. 7, 2016 Sheet 1 of 3 US 9,363,187 B2

140\ FIG. 1
100
DEVICE
142 1\ 144 146 148
\ y 150 \ / /
NIC |—=| DECODER || VIDEO RENDERER || DISPLAY
A
A
NETWORK 110
A 120
SERVER
FreEessmmmmm—m——————m—— |
122 124 ! GPU 130 !
Ny \ | — I
e | | GRAPHICS FRAME I
NIC == CPU ™| RENDERER | | CAPTURER [] !
1 | 136 O) |
: ENCODER |« :
e e i e o e o o — — — — — — - |
120
~ FIG. 2 124
{"_"—___"'EPU _______ "}
: HYPERVISOR 202 :
I A A A A |
l Y \ A I
| VM W |ooo| WM |
| / 7y / /Yy /'y \ |
1_ 204-1 204-2 204-N_}
A
\/ Y
VIRTUAL | | VIRTUAL | | VIRTUAL
| epu GPU GPU GPU
130 7 7 N
206-1 206-2 206-N

U.S. Patent Jun. 7, 2016 Sheet 2 of 3 US 9,363,187 B2
¢ FIG. 3
310 VIRTUAL 206
(MACHINE FIG. 4 v
VM OS VIRTUAL GPU
410
312~] apLICATION RENDERER |
314~ VIRTUAL DESKTOP FRAME CAPTURER |~412
INFRASTRUCTURE
ENCODER _g14
36| GRAPHICS DRIVER
QoS MANAGER |N_ 446
31g—| QoS MANAGER
FIG. 5
DISPLAY [+—— VIDEO RENDERER
110 150~J" InpuT DEVICE 144 O S
148 146
142~ Y N
NETWORK)= = NIC > DECODER
I 502
PROCESSOR c
508"
MEMORY
CLIENT JITTER BUFFER
510 DATA STRUCTURE | R_504
— \
506

U.S. Patent Jun. 7, 2016 Sheet 3 of 3

G

620~

RECEIVE, ON A SERVER,
ONE-WAY-DELAY STATISTICS BASED
ON A VIDEO STREAM TRANSMITTED

FROM THE SERVER TO A CLIENT

!

630~

EMPLOY THE ONE-WAY-DELAY
STATISTICS IN CALCULATING AND
RECOGNIZING A LEVEL OF JITTER

EXCEEDING A THRESHOLD FOR

AT LEAST A JITTER WAIT TIME

!

640"

ENABLE JITTER
BUFFERING ON THE CLIENT

Wﬁ

FIG. 6

US 9,363,187 B2

US 9,363,187 B2

1
JITTER BUFFERING SYSTEM AND METHOD
OF JITTER BUFFERING

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Application Ser. No. 61/730,940, filed by Diard, et al., on
Nov. 28, 2012, entitled “CLOUD-BASED VIRTUALIZED
GRAPHICS PROCESSING FOR REMOTE DISPLAYS”,
which is commonly assigned with this application and incor-
porated herein by reference in its entirety.

TECHNICAL FIELD

This application is directed, in general, to cloud gaming
and, more specifically, to quality of service (QoS) in the
context of cloud gaming.

BACKGROUND

The utility of personal computing was originally focused at
an enterprise level, putting powerful tools on the desktops of
researchers, engineers, analysts and typists. That utility has
evolved from mere number-crunching and word processing
to highly programmable, interactive workpieces capable of
production level and real-time graphics rendering for incred-
ibly detailed computer aided design, drafting and visualiza-
tion. Personal computing has more recently evolved into a
key role as a media and gaming outlet, fueled by the devel-
opment of mobile computing. Personal computing is no
longer resigned to the world’s desktops, or even laptops.
Robust networks and the miniaturization of computing power
have enabled mobile devices, such as cellular phones and
tablet computers, to carve large swaths out of the personal
computing market. Desktop computers remain the highest
performing personal computers available and are suitable for
traditional businesses, individuals and gamers. However, as
the utility of personal computing shifts from pure productiv-
ity to envelope media dissemination and gaming, and, more
importantly, as media streaming and gaming form the leading
edge of personal computing technology, a dichotomy devel-
ops between the processing demands for “everyday” comput-
ing and those for high-end gaming, or, more generally, for
high-end graphics rendering.

The processing demands for high-end graphics rendering
drive development of specialized hardware, such as graphics
processing units (GPUs) and graphics processing systems
(graphics cards). For many users, high-end graphics hardware
would constitute a gross under-utilization of processing
power. The rendering bandwidth of high-end graphics hard-
ware is simply lost on traditional productivity applications
and media streaming. Cloud graphics processing is a central-
ization of graphics rendering resources aimed at overcoming
the developing misallocation.

In cloud architectures, similar to conventional media
streaming, graphics content is stored, retrieved and rendered
on a server where it is then encoded, packetized and trans-
mitted over a network to a client as a video stream (often
including audio). The client simply decodes the video stream
and displays the content. High-end graphics hardware is
thereby obviated on the client end, which requires only the
ability to play video. Graphics processing servers centralize
high-end graphics hardware, enabling the pooling of graphics
rendering resources where they can be allocated appropri-
ately upon demand. Furthermore, cloud architectures pool
storage, security and maintenance resources, which provide

15

20

25

40

45

50

55

2

users easier access to more up-to-date content than can be had
on traditional personal computers.

Perhaps the most compelling aspect of cloud architectures
is the inherent cross-platform compatibility. The corollary to
centralizing graphics processing is offloading large complex
rendering tasks from client platforms. Graphics rendering is
often carried out on specialized hardware executing propri-
etary procedures that are optimized for specific platforms
running specific operating systems. Cloud architectures need
only a thin-client application that can be easily portable to a
variety of client platforms. This flexibility on the client side
lends itself to content and service providers who can now
reach the complete spectrum of personal computing consum-
ers operating under a variety of hardware and network con-
ditions.

SUMMARY

One aspect provides a quality of service (QoS) manage-
ment server, including: (1) a network interface controller
(NIC) configured to receive one-way-delay statistics regard-
ing a video stream transmitted to a client, and (2) a processer
configured to employ the one-way-delay statistics to calcu-
late and recognize jitter and subsequently generate a com-
mand for the client to enable jitter buffering.

Another aspect provides a client for displaying a video
stream, including: (1) a NIC configured to receive a sequence
of frames of the video stream and transmit one-way-delay
statistics regarding the video stream to a server, (2) a memory
configured to store a plurality of the sequence of frames in a
jitter buffer data structure upon receipt of an instruction from
the server to enable jitter buffering based on the one-way-
delay statistics, and (3) a video renderer configured to peri-
odically recall and render an earliest of the plurality of the
sequence of frames for display.

Yet another aspect provides a method of jitter buffering on
a client, including: (1) receiving, on a server, one-way-delay
statistics based on a video stream transmitted from the server
to the client, (2) employing the one-way-delay statistics in
calculating and recognizing a level of jitter exceeding a
threshold for at least a jitter wait time, and (3) enabling jitter
buffering on the client.

BRIEF DESCRIPTION

Reference is now made to the following descriptions taken
in conjunction with the accompanying drawings, in which:

FIG. 1 is a block diagram of a cloud gaming system;

FIG. 2 is a block diagram of a server;

FIG. 3 is a block diagram of one embodiment of a virtual
machine;

FIG. 4 is a block diagram of one embodiment of a virtual
GPU;,

FIG. 5 is a block diagram of one embodiment of a client
configured for jitter buffering; and

FIG. 6 is a flow diagram of one embodiment of a method of
jitter buffering.

DETAILED DESCRIPTION

Major limitations of cloud gaming, and cloud graphics
processing in general, are latency and the unpredictable net-
work conditions that bring it about. Latency in cloud gaming
can be devastating to game play experience. Latency in
simple media streaming is less catastrophic because it is
overcome pre-encoding the streaming media, buffering the
stream on the receiving end, or both. By its nature, cloud

US 9,363,187 B2

3

gaming employs a significant real-time interactive compo-
nent in which a user’s input closes the loop among the server,
client and the client’s display. The lag between the user’s
input and visualizing the resulting effect is considered
latency. It is realized herein that pre-encoding or buffering
does nothing to address this latency.

Latency is induced by a variety of network conditions,
including: network bandwidth constraints and fluctuations,
packet loss over the network, increases in packet delay and
fluctuations in packet delay from the server to the client,
which manifest on the client as jitter. While latency is an
important aspect of the game play experience, the apparent
fidelity ofthe video stream to the client is plagued by the same
network conditions. Fidelity is a measure of the degree to
which a displayed image or video stream corresponds to the
ideal. An ideal image mimics reality; its resolution is
extremely high, and ithas no compression, rendering or trans-
mission artifacts. An ideal video stream is a sequence of ideal
images presented with no jitter and at a frame rate so high that
it, too, mimics reality. Thus, a higher-resolution, higher-
frame-rate, lower-artifacted, lower-jitter video stream has a
higher fidelity than one that has lower resolution, a lower
frame rate, contains more artifacts or is more jittered.

Latency and fidelity are essentially the client’s measures of
the game play experience. However, from the perspective of
the server or a cloud service provider, the combination of
latency and fidelity are components of QoS (QoS). A QoS
system, often a server, is tasked with managing QoS for its
clients. The goal is to ensure an acceptable level of latency
and fidelity, the game play experience, is maintained under
whatever network conditions arise and for whatever client
device subscribes to the service.

The management task involves collecting network data and
evaluating the network conditions between the server and
client. Traditionally, the client performs that evaluation and
dictates back to the server the changes to the video stream it
desires. It is realized herein that a better approach is to collect
the network data, or “QoS statistics,” on the client and trans-
mit it to the server so the server can evaluate and determine
how to improve QoS. Given that the server executes the
application, renders, captures, encodes and transmits the
video stream to the client, it is realized herein the server is
better suited to perform QoS management. It is also realized
herein the maintainability of the QoS system is simplified by
shifting the task to the server because QoS software and
algorithms are centrally located on the server, and the client
need only remain compatible, which should include continu-
ing to transmit QoS statistics to the server.

The client is capable of collecting a variety of QoS statis-
tics. One example is packets lost, or packet loss count. The
server marks packets with increasing packet numbers. When
the client receives packets, it checks the packet numbers and
determines how many packets were lost. The packet loss
count is accumulated until QoS statistics are ready to be sent
to the server. A corollary to the packet loss count is the time
interval over which the losses were observed. The time inter-
val is sent with the QoS statistics, to the server, which can
calculate a packet loss rate. Meanwhile, the client resets the
count and begins accumulating again.

Another example of a QoS statistic is a one-way-delay.
When a packet is ready to transmit, the server writes the
transmit timestamp in the packet header. When the packet is
received by the client, the receipt timestamp is noted. The
time difference is the one-way-delay. Since clocks on the
server and client are not necessarily synchronized, the one-
way-delay value is not the same as the packet transmit time.
So, as the client accumulates one-way-delay values for con-

10

15

20

25

30

35

40

45

50

55

60

65

4

secutive packets and transmits them to the server, the server
calculates one-way-delay deltas between consecutive pack-
ets. The deltas give the server an indication of changes in
latency.

Yet another example of a QoS statistic is a frame number.
Frame numbers are embedded in each frame of video. When
the client sends statistics to the server, it includes the frame
number of the frame being processed by the client at that time.
From this, the server can determine the speed at which the
client is able to process the video stream, which is to say, the
speed at which the client receives, unpacks, decodes and
renders for display.

QoS statistics are sent periodically to the server for use in
QoS determinations. It is realized herein the frequency at
which the client sends QoS statistics is itself an avenue of
tuning QoS to that client. Another example of a QoS setting,
realized herein, is dynamic jitter buffering. Jitter is a visual-
ization of fluctuations in packet arrival time on the client. The
fluctuations are often caused by network queuing delays or
transmission re-tries. The fluctuations can be evident before
and after decoding and the result is that frame rendering times
are not uniform, which gives the appearance of stuttery play-
back. Dynamic jitter buffering mitigates this affect. Such a
mitigation, it is realized herein, improves the gameplay expe-
rience in that it improves the perceived fidelity of the video
stream at the expense of latency.

Jitter buffering is a direct introduction of latency into the
video stream. It is realized herein that jitter buffering should
be actively controlled and should only run when absolutely
necessary. [t is further realized herein that dynamic jitter
buffering accomplishes this by observing jitter levels over
time before committing to video streaming with or without
jitter buffering. While QoS statistics are collected and trans-
mitted from the client, jitter levels are calculated on the server.
It is realized herein that in many cases, QoS settings derived
from QoS statistics are implemented on the server, however,
dynamic jitter buffering is carried out on the client itself and
is merely controlled from the server.

A jitter level is calculated based on the one-way-delay QoS
statistics from the client, and, more specifically, the one-way-
delay delta statistics the server derives from the one-way-
delay values. One example of a jitter calculation is:

|one-way-delay delta| — Jitter,;;

Tittet,,,, = Jitter,;y + i

It is also realized herein that, in addition to the QoS statistics,
several other QoS settings assume aspects of controlling
dynamic jitter buffering. The first is the jitter threshold that,
generally, above which jitter buftering should be enabled and
below which should be disabled. The calculated jitter level is
sensitive to constantly changing network conditions. That
being the case, it is realized herein that jitter buffering should
not be enabled and disabled as freely as jitter levels rise and
fall beyond thejitter threshold. Dynamic jitter buffering intro-
duces a jitter wait time and a no-jitter wait time that create a
hysteresis in the enabling and disabling of jitter buffering.
Only when the server observes jitter levels above the jitter
threshold for at least the jitter wait time is dynamic jitter
buffering enabled. Likewise, only when the server observes
jitter levels below the jitter threshold for at least the no-jitter
wait time is dynamic jitter buffering disabled. Such an
arrangement prevents overreactions to temporary network
condition changes.

US 9,363,187 B2

5

The client traditionally operates by receiving, unpacking,
decoding, rendering and displaying N frames per second of
video. During perfectly smooth playback, a frame is rendered
and displayed precisely every 1/N seconds. Practically, play-
back is rarely ever that precise or smooth. If playback fluctu-
ates (jitters) too much around that rate, a jitter buffering
enabled client would mitigate the effect by enabling dynamic
jitter buffering. Rather than frames of video flowing directly
from the client network interface controller (NIC), to the
decoder, to the video renderer and on to the display, frames
are queued in memory, specifically, in a jitter buffer data
structure. The queue is inserted into this flow, for example,
after decoding, and can hold multiple decoded frames of raw
video. Always having at least one decoded frame in the jitter
buffer allows the client to render and display reliably every
1/N seconds. Having more than one frame in the jitter buffer
means the client simply moves the oldest frame from the jitter
buffer to the video renderer every 1/N seconds.

On occasion, the client will experience what is known as a
buffer under-run. The jitter buffer is under-run if the client
renders and displays frames from the buffer before the buffer
is loaded with the next frame, resulting in stuttery playback.
In other words, the client needs to increase thejitter buffering.
It is realized herein that, practically, dynamic jitter buffering
cannot always have at least one frame in the buffer without
some further mechanism. It is further realized herein that
enforcing a minimum buffering in terms of a minimum num-
ber of frames or a minimum buffering time, will mitigate the
risks of jitter buffer under-runs. It is also realized herein the
client should maintain (as another QoS setting) a ceiling on
the potential latency introduced by jitter buffering. By declar-
ing a maximum size for the jitter buffer, a cap is effectively in
place for the latency attributable to the jitter buffer.

The ideal utilization of a jitter buffer is determined by a
trade-off between latency and smooth non-stuttery playback.
The minimum and maximum buffering described above are
QoS settings that define where on the spectrum of that trade-
off the QoS server and client operate. If utilization exceeds
the maximum, older frames can be discarded. Alternatively, if
the utilization exceeds the maximum, then the rendering rate,
or “drain rate,” on the client can be increased, thereby draw-
ing frames from the jitter buffer more quickly. Conversely, if
utilization falls below the minimum, under-runs and stuttery
playback are possible. To mitigate, as mentioned above, the
minimum buffering can be enforced. Alternatively, reducing
the rendering rate on the client also helps mitigate the risk of
jitter buffer under-runs. These mechanisms can be enabled
based on the number of under-runs experience over a period
of time.

Additionally, it is realized herein that a variety of other
avenues, or QoS settings, for tuning QoS are possible, includ-
ing: frame rate scaling, resolution scaling, streaming bit rate,
minimum and maximum bit rates, minimum and maximum
capture frame rates, the frequency of bit rate changes and
hysteresis in jitter buffering thresholds.

Before describing various embodiments of the QoS system
or method introduced herein, a cloud gaming environment
within which the system or method may be embodied or
carried out will be described.

FIG. 1 is a block diagram of a cloud gaming system 100.
Cloud gaming system 100 includes a network 110 through
which a server 120 and a client 140 communicate. Server 120
represents the central repository of gaming content, process-
ing and rendering resources. Client 140 is a consumer of that
content and those resources. Server 120 is freely scalable and
has the capacity to provide that content and those services to
many clients simultaneously by leveraging parallel and

20

40

45

55

6

apportioned processing and rendering resources. The scal-
ability of server 120 is limited by the capacity of network 110
in that above some threshold of number of clients, scarcity of
network bandwidth requires that service to all clients degrade
on average.

Server 120 includes a network interface card (NIC) 122, a
central processing unit (CPU) 124 and a GPU 130. Upon
request from Client 140, graphics content is recalled from
memory via an application executing on CPU 124. As is
convention for graphics applications, games for instance,
CPU 124 reserves itself for carrying out high-level opera-
tions, such as determining position, motion and collision of
objects in a given scene. From these high level operations,
CPU 124 generates rendering commands that, when com-
bined with the scene data, can be carried out by GPU 130. For
example, rendering commands and data can define scene
geometry, lighting, shading, texturing, motion, and camera
parameters for a scene.

GPU 130 includes a graphics renderer 132, a frame cap-
turer 134 and an encoder 136. Graphics renderer 132 executes
rendering procedures according to the rendering commands
generated by CPU 124, yielding a stream of frames of video
for the scene. Those raw video frames are captured by frame
capturer 134 and encoded by encoder 136. Encoder 134 for-
mats the raw video stream for transmission, possibly employ-
ing a video compression algorithm such as the H.264 standard
arrived at by the International Telecommunication Union
Telecommunication Standardization Sector (ITU-T) or the
MPEG-4 Advanced Video Coding (AVC) standard from the
International Organization for Standardization/International
Electrotechnical Commission (ISO/IEC). Alternatively, the
video stream may be encoded into Windows Media Video®
(WMV) format, VP8 format, or any other video encoding
format.

CPU 124 prepares the encoded video stream for transmis-
sion, which is passed along to NIC 122. NIC 122 includes
circuitry necessary for communicating over network 110 via
a networking protocol such as Ethernet, Wi-Fi or Internet
Protocol (IP). NIC 122 provides the physical layer and the
basis for the software layer of server 120’s network interface.

Client 140 receives the transmitted video stream for dis-
play. Client 140 can be a variety of personal computing
devices, including: a desktop or laptop personal computer, a
tablet, a smart phone or a television. Client 140 includes a
NIC 142, a decoder 144, a video renderer 146, a display 148
and an input device 150. NIC 142, similar to NIC 122,
includes circuitry necessary for communicating over network
110 and provides the physical layer and the basis for the
software layer of client 140°s network interface. The trans-
mitted video stream is received by client 140 through NIC
142. Client 140 can employ NIC 142 to collect QoS statistics
based on the received video stream, including packet loss and
one-way-delay.

The video stream is then decoded by decoder 144. Decoder
144 should match encoder 136, in that each should employ
the same formatting or compression scheme. For instance, if
encoder 136 employs the ITU-T H.264 standard, so should
decoder 144. Decoding may be carried out by either a client
CPU or a client GPU, depending on the physical client device.
Once decoded, all that remains in the video stream are the raw
rendered frames. The rendered frames a processed by a basic
video renderer 146, as is done for any other streaming media.
The rendered video can then be displayed on display 148.

An aspect of cloud gaming that is distinct from basic media
streaming is that gaming requires real-time interactive
streaming. Not only must graphics be rendered, captured and
encoded on server 120 and routed over network 110 to client

US 9,363,187 B2

7

140 for decoding and display, but user inputs to client 140
must also be relayed over network 110 back server 120 and
processed within the graphics application executing on CPU
124. This real-time interactive component of cloud gaming
limits the capacity of cloud gaming systems to “hide” latency.

Client 140 periodically sends QoS statistics back to Server
120. When the QoS statistics are ready to be sent, Client 140
includes the frame number of the frame of video being ren-
dered by video renderer 146. The frame number is useful for
server 120 to determine how well network 110 and client 140
are handling the video stream transmitted from server 120.
Server 120 can then use the QoS statistics to determine what
actions in GPU 130 can be taken to improve QoS. Actions
available to GPU 130 include: adjusting the resolution at
which graphics renderer 132 renders, adjusting the capture
frame rate at which frame capturer 134 operates and adjusting
the bit rate at which encoder 136 encodes.

FIG. 2 is a block diagram of server 120 of FIG. 1. This
aspect of server 120 illustrates the capacity of server 120 to
support multiple simultaneous clients. In FIG. 2, CPU 124
and GPU 130 of FIG. 1 are shown. CPU 124 includes a
hypervisor 202 and multiple virtual machines (VMs), VM
204-1 through VM 204-N. Likewise, GPU 130 includes mul-
tiple virtual GPUs, virtual GPU 206-1 through virtual GPU
206-N. In FIG. 2, server 120 illustrates how N clients are
supported. The actual number of clients supported is a func-
tion of the number of users ascribing to the cloud gaming
service at a particular time. Each of VM 204-1 through VM
204-N is dedicated to a single client desiring to run a respec-
tive gaming application. Each of VM 204-1 through VM
204-N executes the respective gaming application and gen-
erates rendering commands for GPU 130. Hypervisor 202
manages the execution of the respective gaming application
and the resources of GPU 130 such that the numerous users
share GPU 130. Each of VM 204-1 through VM 204-N
respectively correlates to virtual GPU 206-1 through virtual
GPU 206-N. Each of the virtual GPU 206-1 through virtual
GPU 206-N receives its respective rendering commands and
renders a respective scene. Each of virtual GPU 206-1
through virtual GPU 206-N then captures and encodes the
raw video frames. The encoded video is then streamed to the
respective clients for decoding and display.

Having described a cloud gaming environment in which
the QoS system and method introduced herein may be
embodied or carried out, various embodiments of the system
and method will be described.

FIG. 3 is a block diagram of virtual machine (VM) 204 of
FIG. 2. VM 204 includes a VM operating system (OS) 310
within which an application 312, a virtual desktop infrastruc-
ture (VDI) 314, a graphics driver 316 and a QoS manager 318
operate. VM OS 310 can be any operating system on which
available games are hosted. Popular VM OS 310 options
include: Windows®, iOS®, Android®, Linux and many oth-
ers. Within VM OS 310, application 312 executes as any
traditional graphics application would on a simple personal
computer. The distinction is that VM 204 is operating on a
CPU in a server system (the cloud), such as server 120 of FIG.
1 and FIG. 2. VDI 314 provides the foundation for separating
the execution of application 312 from the physical client
desiring to gain access. VDI 314 allows the client to establish
a connection to the server hosting VM 204. VDI 314 also
allows inputs received by the client, including through a key-
board, mouse, joystick, hand-held controller, or touch-
screens, to be routed to the server, and outputs, including
video and audio, to be routed to the client. Graphics driver 316
is the interface through which application 312 can generate
rendering commands that are ultimately carried out by a

10

15

20

25

30

35

40

45

50

55

60

65

8

GPU, such as GPU 130 of FIG. 1 and FIG. 2 or virtual GPUs,
virtual GPU 206-1 through virtual GPU 206-N.

QoS manager 318 collects QoS statistics transmitted from
a particular client, such as client 140, and determines how to
configure various QoS settings for that client. The various
QoS settings influence the perceived fidelity of the video
stream and, consequently, the latency. In this embodiment,
QoS manager 318 calculates the jitter level experience by the
particular client and then determines whether or not dynamic
jitter buffering should be enabled. The QoS settings indicate
whether dynamic jitter buffering is enabled or disabled, along
with the jitter threshold, the jitter wait time, the no-jitter wait
time, and in certain embodiments, a maximum jitter buffer
size and a minimum jitter buffering parameter for mitigating
buffer under-runs.

Once determined, QoS manager 318 implements configu-
ration changes by directing the GPU and client accordingly.
Alternatively, the QoS manager tasks can be carried out on the
GPU itself, such as GPU 130.

FIG. 4 is a block diagram of virtual GPU 206 of FIG. 2.
Virtual GPU 206 includes a renderer 410, a framer capturer
412, an encoder 414 and a QoS manager 416. Virtual GPU
206 is responsible for carrying out rendering commands for a
single virtual machine, such as VM 204 of FIG. 3. Rendering
is carried out by renderer 410 and yields raw video frames
having a resolution. The raw frames are captured by frame
capturer 412 at a capture frame rate and then encoded by
encoder 414. The encoding can be carried out at various bit
rates and can employ a variety of formats, including H.264 or
MPEG4 AVC. The inclusion of an encoder in the GPU, and,
moreover, in each virtual GPU 206, reduces the latency often
introduced by dedicated video encoding hardware or CPU
encoding processes.

Similar to QoS manager 318 of FIG. 3, QoS manager 416
collects QoS statistics and determines how to configure vari-
ous QoS settings for the client. Unlike the embodiment of
FIG. 3, the inclusion of QoS manager 416 within virtual GPU
206 allows more direct control over the elements of each
virtual GPU, including renderer 410, frame capturer 412 and
encoder 414. These elements are largely responsible for
implementing the various QoS settings arrived at by QoS
manager 416, or QoS manager 318 of the embodiment of F1G.
3. Certain other QoS settings are relayed to the client itself,
such as the frequency of QoS statistics transmissions and
dynamic jitter buffering.

FIG. 5 is a block diagram of one embodiment of a client
510 capable of carrying out jitter buffering. Client 510 is
based on client 140 of FIG. 1 and contains several common
components, including: NIC 142, decoder 144, video ren-
derer 146, display 148 and input device 150, each of FIG. 1.
In addition to these elements, client 510 includes a processer
508, a memory 504 and a data bus 502. Data bus 502 couples
memory 504 to processer 508, decoder 144 and video ren-
derer 146. Memory 504 is configured to store a jitter buffer
data structure 506.

A video stream is received by client 510 over network 110
through NIC 142. The video stream is decoded by decoder
144, as it is in client 140 of FIG. 1. When the QoS statistics
transmitted back to the server indicate client 510 is experi-
encing excessive jitter, server transmits a command over net-
work 110 to client 510 to enable dynamic jitter buffering. The
command is received via NIC 142 and processed by processer
508. Processer 508 then directs the decoded frames from
decoder 144 to jitter buffer data structure 506 through data
bus 502. As decoded frames are queued in jitter buffer data
structure 506, video renderer 146 periodically draws the old-
est decoded frame from memory 504 and renders it for dis-

US 9,363,187 B2

9

play on display 148. Any fluctuations in packet receive times
at NIC 142 are absorbed by the time each frame spends in
memory 504. This allows for a slightly latent, but smooth
playback of the video stream.

FIG. 6 is a flow diagram of one embodiment of a method of
jitter buffering. The method begins at a start step 610. At a step
620, the server receives one-way-delay statistics based on the
video stream transmitted from the server to the client. Based
on those statistics, at a step 630, the server calculates the jitter
being experienced by the client and determines whether the
jitter has persisted above the jitter threshold long enough to
justify enabling jitter buffering, or alternatively, if jitter buft-
ering is already enabled, if the jitter has persisted below the
jitter threshold long enough to justify disabling. If the former
is true, jitter buffering is enabled on the client at a step 640. If
the latter is true, jitter buffering would be disabled on the
client.

In alternate embodiments, determinations would be made
as to whether the client has experienced excessive jitter buffer
under-runs. If that is the case, in those embodiments, the
client would enforce a minimum jitter buffering that could be
defined in either a minimum number of frames to buffer or a
minimum amount of time to queue frames. Other embodi-
ments also implement a maximum jitter buffer size to cap the
potential latency introduced by the dynamic jitter buffering
process. The method then ends at a step 650.

Those skilled in the art to which this application relates will
appreciate that other and further additions, deletions, substi-
tutions and modifications may be made to the described
embodiments.

What is claimed is:

1. A quality of service (QoS) management server, compris-
ing:

a network interface controller (NIC) configured to receive
one-way-delay statistics regarding a video stream trans-
mitted to a client; and

a processer configured to employ said one-way-delay sta-
tistics to calculate and recognize jitter and subsequently
generate a command for said client to enable jitter buff-
ering.

2. The QoS management server recited in claim 1 wherein
said NIC is further configured to transmit said command to
said client.

3. The QoS management server recited in claim 1 wherein
said processer is a graphics processing unit (GPU).

4. The QoS management server recited in claim 1 wherein
said processer is further configured to generate said command
only if jitter exceeds a threshold for at least a jitter wait time.

5. The QoS management server recited in claim 4 wherein
said processer is further configured to generate a command
for said client to disable jitter buffering if jitter falls below
said threshold for at least a no-jitter wait time.

6. The QoS management server recited in claim 1 wherein
said processer is further configured to:

observe a rate of jitter buffer under-runs; and

generate a command for said client to carry out a minimum
jitter buffering if said rate exceeds an under-run thresh-
old.

10

20

25

35

50

10

7. The QoS management server recited in claim 6 wherein
a said minimum jitter buffering is the lesser of a minimum
buffering time and a time required to buffer a minimum
number of frames.

8. A client for displaying a video stream, comprising:

a network interface controller (NIC) configured to receive

a sequence of frames of said video stream and transmit
one-way-delay statistics regarding said video streamto a
server;

a memory configured to store a plurality of said sequence
of frames in a jitter buffer data structure upon receipt of
an instruction from said server to enable jitter buffering
based on said one-way-delay statistics; and

a video renderer configured to periodically recall and ren-
der an earliest of said plurality of said sequence of
frames for display.

9. The client recited in claim 8 wherein said memory has a
configurable maximum storage space allocable to said jitter
buffer data structure.

10. The client recited in claim 8 further comprising a
decoder configured to decode said sequence of frames before
said sequence of frames is subject to storage in said jitter
buffer data structure.

11. The client recited in claim 8 further comprising a pro-
cesser operable to:

detect an under-run rate for said jitter buffer data structure;
and

employ a minimum jitter buffering if said under-run rate
exceeds an under-run threshold.

12. The client recited in claim 11 wherein said minimum

jitter buffering is a minimum number of frames to be buffered.

13. The client recited in claim 11 wherein said minimum
jitter buffering is a minimum amount of time to buffer.

14. The client recited in claim 11 wherein said video ren-
derer suspends operation until said minimum jitter buffering
is achieved.

15. A method of jitter buffering on a client, comprising:

receiving, on a server, one-way-delay statistics based on a
video stream transmitted from said server to said client;

employing said one-way-delay statistics in calculating and
recognizing a level of jitter exceeding a threshold for at
least a jitter wait time; and

enabling jitter buffering on said client.

16. The method recited in claim 15 wherein said jitter wait
time is a configurable time interval.

17. The method recited in claim 15 wherein said employing
includes calculating one-way-delay delta times among con-
secutive packets of said video stream.

18. The method recited in claim 15 further comprising
buffering at least one frame of video for subsequent video
rendering.

19. The method recited in claim 15 further comprising:

determining a rate of jitter buffer under-runs;

ensuring a minimum amount of jitter buffering.

20. The method recited in claim 15 further comprising
disabling jitter buffering on said client if said level of jitter
falls below said threshold for at least a no-jitter wait time.

#* #* #* #* #*

